s CKEditor 4 Documentation

‘ Installation

Installing CKEditor is easy. Choose the appropriate procedure (fresh

install or upgrade) and follow the steps described below. Contents

1. Fresh Installation
2. Upgrade

Fresh Installation 3. Verification of the Installation

To install CKEditor for the first time, proceed in the following way:

1. Download the latest version from the CKEditor website: http://ckeditor.com/download
2. Extract (decompress) the downloaded archive to a directory called ckeditor in the root of your website.

You can place the files in any path of your website. The ckeditor directory is the default one.

Upgrade

To upgrade an existing CKEditor installation, proceed in the following way:

Rename your old editor folder to a backup folder, for example ckeditor_old.
Download the latest version from the CKEditor website: http://ckeditor.com/download
Extract (decompress) the downloaded archive to the original editor directory, for example ckeditor.
Copy all configuration files that you have changed from the backup directory to their corresponding position in
the new directory. These could include (but not limited to) the following files:
1. config.js
2. contents.css
3. styles.js

PonE

Verification of the Installation

CKEditor comes with sample pages that can be used to verify that the installation proceeded properly. In order to
see whether the editor is working, take a look at the samples directory.

To test your installation, call the following page at your website:
http://<your site>/<CKEditor installation path>/samples/index.html

For example:
http://www.example.com/ckeditor/samples/index.html

http://docs.ckeditor.com/?print=/guide/dev_installation-section-1
http://docs.ckeditor.com/?print=/guide/dev_installation-section-2
http://docs.ckeditor.com/?print=/guide/dev_installation-section-3
http://ckeditor.com/download
http://ckeditor.com/download
Jack
下划线

s CKEditor 4 Documentation

‘ Loading CKEditor

CKEditor is a JavaScript application. To load it, you need to include a single file reference in your page. If you have
installed CKEditor in the ckeditor directory in root of your website, you need to insert the following code
fragment into the <head> section of your page:

<head>
<script src="/ckeditor/ckeditor.js"></script>
</head>

When the above file is loaded, the CKEditor JavaScript API is ready to be used.

When adding CKEditor to your web pages, use the original file name (ckeditor.js). If you want to use a
different file name, or even merge the CKEditor script into another JavaScript file, refer to the Specifying the Editor
Path section of the Developer's Guide first.

Creating Editors

Now that the CKEditor JavaScript API is available in the page, you can use it create editors. For that, there are two
different options available:

» Framed Editing: the most common way to use the editor, usually represented by a toolbar and a editing area
placed on a specific position in the page.

» Inline Editing: to be used on pages that look like the final page. Editing is enabled directly on HTML elements
through the HTML5 contenteditable attribute. The editor toolbar automatically appears, floating in the

page.

Just click on your preferred option to have more information.

http://docs.ckeditor.com/?print=/api
http://docs.cksource.com/CKEditor_3.x/Developers_Guide/Specifying_the_Editor_Path
http://docs.cksource.com/CKEditor_3.x/Developers_Guide/Specifying_the_Editor_Path
http://docs.ckeditor.com/?print=/api
Jack
下划线

Jack
下划线

Jack
高亮

Jack
高亮

Jack
下划线

s CKEditor 4 Documentation

‘ Framed Editing

Framed Editing is the most common way to use CKEditor. It is usually

represented by a toolbar and a editing area placed on a specific position Contents

in the page. 1. Creating a Framed Editor

After loading the CKEditor script, you'll be ready to create your editors. 2. Saving the Editor Data
3. Client-Side Data Handling
4. Complete Sample

Creating a Framed Editor

On Framed Editing, CKEditor works just like a textarea element in your page. The editor offers a user interface
to easily write, format, and work with rich text, but the same thing could be achieved (though not that easily) with a
<textarea> element, requiring the user to type HTML code inside.

As a matter of fact, CKEditor uses the textarea to transfer its data to the server. The textarea element is
invisible to the end user. In order to create an editor instance, you must first add a <textarea> element to the
source code of your HTML page:

<p> </p>

<textarea name="editorl">&lIt;p>Initial value.</pé></textarea>

Note that if you want to load data into the editor, for example from a database, you need to put that data inside the
<textarea> element, just like the HTML-encoded <p> element in the example above. In this case the textarea
element was named editorl. This name can be used in the server-side code later, when receiving the posted
data.

After the textarea element is inserted, you can use the CKEditor JavaScript API to replace this HTML element with
an editor instance. A simple CKEDITOR.replace method call is needed for that:

<script>
CKEDITOR .replace(“editorl®);
</script>

This script block must be included at any point after the <textarea> tag in the source code of the page. You can
also_call the replace function inside the <head> section, but in this case you will need to listen for the
window.onload event:

<script>
window.onload = function() {
CKEDITOR.replace(“editorl”);

3

</script>

Saving the Editor Data

As stated above, the editor works just like a <textarea> field. This means that when submitting a form containing
an editor instance, its data will be simply posted, using the <textarea> element name as the key to retrieve it.

For example, following the above example, we could create the following PHP code:

http://docs.ckeditor.com/?print=/guide/dev_framed-section-1
http://docs.ckeditor.com/?print=/guide/dev_framed-section-2
http://docs.ckeditor.com/?print=/guide/dev_framed-section-3
http://docs.ckeditor.com/?print=/guide/dev_framed-section-4
http://docs.ckeditor.com/%21#/api
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
Jack
下划线

Jack
下划线

Jack
打字机文本
<p>

Jack
打字机文本
</p>

Jack
下划线

Jack
下划线

Jack
高亮

Jack
下划线

<?php
$editor_data = $ POST[“editorl®];
?>

Client-Side Data Handling

Some applications (like those based on Ajax) need to handle all data on the client side, sending it to the server
using their specific methods. If this is the case, it is enough to use the CKEditor JavaScript API to easily retrieve
the editor instance data. In order to do this, you can use the getData method:

<script>
var editor_data = CKEDITOR. instances.editorl.getData();
</script>

Complete Sample

To insert a CKEditor instance, you can use the following sample that creates a basic page containing a form with a
textarea element that is replaced with CKEditor.

<html>
<head>
<title>CKEditor Sample</title>
<script src="/ckeditor/ckeditor.js"></script>
</head>
<body>
<form method="'post'>
<p>
My Editor:

<textarea name="editorl>&lIt;p>Initial value._</pé></textarea>
<script>
CKEDITOR.replace(“editorl®);
</script>
</p>
<p>
<input type="submit'>
</p>
</form>
</body>
</html>

http://docs.ckeditor.com/%21#/api
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#method-getData
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
Jack
高亮

ﬂ CKEditor 4 Documentation

‘ Inline Editing

Inline Editing is a new technology designed to make it possible edit pages
that look just like the final page. It is a total WYSIWYG experience,
because not only the edited content will look like the final, but also the
page and the context where the content is placed.

Contents

1. Enabling Inline Editing
2. Retrieving the Editor Data

Enabling Inline Editing

Inline Editing is enabled directly on HTML elements through the HTML5 contenteditable attribute.

For example, supposed that you want to make a <div> element editable. It's enough to do so:

<div id="editable™ contenteditable=""true">

<hl>Inline Editing in Action!</h1>

<p>The div element that holds this text is now editable.
</div>

It is also possible to enable editing by code, by calling CKEDITOR:.inline:

<div id="editable" contenteditable=""true">
<hl1>Inline Editing in Action!</h1>
<p>The div element that holds this text is now editable.
</div>
<script>
// Turn off automatic editor creation first.
CKEDITOR.disableAutolnline = true;
CKEDITOR.inline("editable®™);
</script>

When clicking inside the above <div> contents, the CKEditor toolbar will appear.

Retrieving the Editor Data

Unlike Framed Editing, the data edited with CKEditor is not placed inside a <textarea> when using Inline Editing.
It is instead present directly in the page DOM. Because of this, it is your application job to retrieve the data and
manipulate it for saving.

To retrieve the editor data, simply call the CKEDITOR.editor.getData method of the editor instance. For the above
examples, tho would look like the following:

<script>
var data = CKEDITOR. instances.editable.getData();

// Your code to save ''data', usually though Ajax.
</script>

Note that the original <div> id has been passed to the CKEDITOR.instances object, to retrieve the editor
instance.

http://docs.ckeditor.com/?print=/guide/dev_inline-section-1
http://docs.ckeditor.com/?print=/guide/dev_inline-section-2
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-inline
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#method-getData
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-instances
http://docs.ckeditor.com/?print=/api/CKEDITOR#cfg-disableAutoInline
http://docs.ckeditor.com/?print=/api/CKEDITOR#cfg-disableAutoInline
http://docs.ckeditor.com/?print=/api/CKEDITOR#cfg-disableAutoInline
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-inline
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-inline
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-inline

s CKEditor 4 Documentation

‘ Setting CKEditor Configuration

CKEditor comes with a rich set of configuration options that

make it possible to customize its appearance, features, and Contents
behavior. The main configuration file is named .) . .
config.js. This file can be found in the root of the L Ava_llz_able Con_flgura.tlon el
L2 . 2. Defining Configuration In-Page
CKEditor installation folder. . T
3. Using the config.js File
4. Using a Custom Configuration File
; ; ; ; 5. Configuration Loading Order
Available Conflguratlon OpthﬂS 6. Avoiding Loading External Settings Files

All available configuration options can be found in the API
documentation. Refer to the CKEDITOR.config object definition.

Defining Configuration In-Page

The best way to set the CKEditor configuration is in-page, when creating editor instances. This method lets you
avoid modifying the original distribution files in the CKEditor installation folder, making the upgrade task easier.

In-page settings can be passed to any of the editor instance creation functions, namely CKEDITOR.replace and
CKEDITOR.appendTo. For example:

CKEDITOR.replace(“editorl®, {
toolbar: "Basic”,
uiColor: "#9AB8F3*

P

Note that the configuration options are passed through a literal object definition (starting with a "{" symbol and
ending with a "}" symbol). Because of this the proper syntax for each option is (" "configuration name®") :
(" "configuration value® ™). Be sure to not use the "equal" character (=) in place of the colon character (:).

Using the config.js File

CKEditor settings can also be configured by using the config. js file. By default this file is mostly empty. To
change CKEditor configuration, add the settings that you want to modify to the config. js file. For example:

CKEDITOR . editorConfig = function(config) {
config.language = "“fr-;
config.uiColor = "#AADCG6E";

};

In order to apply the configuration settings, the CKEDITOR.editorConfig function must always be defined. The
config. js file will be executed in the scope of your page, so you can also make references to variables defined
in-page or even in other JavaScript files.

Using a Custom Configuration File

Using a custom configuration file is another recommended method of setting CKEditor configuration. Instead of
using the default config. js file, you can create a copy of that file anywhere in your website and simply point the

http://docs.ckeditor.com/?print=/guide/dev_configuration-section-1
http://docs.ckeditor.com/?print=/guide/dev_configuration-section-2
http://docs.ckeditor.com/?print=/guide/dev_configuration-section-3
http://docs.ckeditor.com/?print=/guide/dev_configuration-section-4
http://docs.ckeditor.com/?print=/guide/dev_configuration-section-5
http://docs.ckeditor.com/?print=/guide/dev_configuration-section-6
http://docs.ckeditor.com/?print=/api/CKEDITOR.config
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-appendTo
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-editorConfig
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-editorConfig
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-editorConfig
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-editorConfig

editor instances to load it. The advantage of this approach is that in this way you can avoid changing the original
file, which makes it easier to upgrade CKEditor later by simply overwriting all files.

Suppose you copied the config. js file to a folder named custom in the root of your website. You also renamed
the file to ckeditor_config.js. At that point it is enough to only set the customConfig configuration option
when creating the editor instances to use the customized settings defined in the file. For example:

CKEDITOR.replace(“editorl®, {
customConfig: “/custom/ckeditor_config.js”

s

The custom configuration file must look just like the default conTig. js file.

Configuration Loading Order

You are not required to only use one of the above configuration options. The methods described above can be
mixed and the configuration will be loaded properly. The following list presents the configuration loading order used
when creating an editor instance:

» An editor instance is created. At this point all its default configuration options are set.

« If the customConTig setting has been set "in-page", that file is loaded, otherwise the default config. js file
is loaded. All settings in the custom configuration file override current instance settings.

« |If the settings loaded in step 2 also define a new customConfig value, another custom configuration file is
loaded and its settings override current instance settings. This happens recursively for all files until no
customConfig is defined.

« Finally the settings defined "in-page" override current instance settings (except customCon¥ig, which has
been used in step 1).

Avoiding Loading External Settings Files

It is also possible to completely avoid loading an external configuration file, reducing the number of files loaded. To
do that, you need to set the CKEDITOR.config.customConfig setting to an empty string. For example:

CKEDITOR.replace(“editorl®, {
customConfig: °*°

P

This setting is definitely recommended, if you are not setting the configuration in the config. js file nor a custom
configuration file.

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-customConfig
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-customConfig
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

s CKEditor 4 Documentation

‘ Toolbar Customization

While CKEditor is a full-featured WYSIWYG editor, not all of its
options may be needed in all cases. Because of this, toolbar
customization is one of the most common requirements.

Contents

1. Toolbar Groups Configuration
2. "ltem by Item" Configuration

There are two ways to configure the toolbar to match your needs: J
3. Accessibility Concerns

e Toolbar Groups Configuration
e "ltem by Item" Configuration

Toolbar Groups Configuration

CKEditor 4 introduced a new concept for toolbar organization which is based on "grouping" instead of the
traditional "item by item positioning" way.

Grouping configuration is defined by the toolbarGroups setting. The following the the configuration used by the
"standard" distribution of CKEditor:

config.toolbarGroups = [

{ name: “clipboard”, groups: [“clipboard®, “undo®™] 1},

{ name: “editing”, groups: [“find", “selection®, “spellchecker®] 7},
{ name: “links" },

{ name: “insert" },

{ name: “forms" },

{ name: “tools” %},

{ name: “document”, groups: ["mode®, "document®, “"doctools®] },

{ name: “others" },

/.

{ name: “basicstyles®, groups: [“basicstyles®, “cleanup®] },

{ name: “paragraph®, groups: ["list®, "indent", “blocks®, "align®] },
{ name: “styles” },

{ name: “colors” },

{ name: “about® }

1:

It is a list (Array) of objects, each one with a "name" (e.g "clipboard" or "links") and a optional "sub-groups" list.

Changing the Groups Order
You can easily customize the groups ordering and position by simply changing the above configuration.

You can force row-breaks in the toolbar by adding */* into the list, just like you could see above.

Note that there are unused groups in the above configuration. This is "by design" (see "The Benefits of Group
Configuration™).

The Benefits of Group Configuration
The most important benefit of toolbar grouping configuration over the "item by item" configuration is: automation.

It is now possible for plugin developers to define into which group their plugins should add buttons in the toolbar.
For example, the "image" plugin, includes its button into the "insert" group, while the undo and redo buttons go into

http://docs.ckeditor.com/?print=/guide/dev_toolbar-section-1
http://docs.ckeditor.com/?print=/guide/dev_toolbar-section-2
http://docs.ckeditor.com/?print=/guide/dev_toolbar-section-3
http://docs.ckeditor.com/?print=/guide/dev_toolbar-section-1
http://docs.ckeditor.com/?print=/guide/dev_toolbar-section-2
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-toolbarGroups

the "undo" sub-group.

While not mandatory, having all groups and sub-groups configured (including not used ones) is recommended
because at any moment in the future, when a new plugin gets installed, its button will automatically appear in the
toolbar without further configuration requirements.

The Drawbacks of Group Configuration

The most evident problem with grouping configuration its that it is not possible to control precisely where each item
is placed in the toolbar. It is the plugin itself to decide it.

"Item by Item" Configuration

Other than the grouping configuration, it is also possible to have more control over every single element in the
toolbar by defining their precise position. That is done by configuring a "toolbar definition".

A toolbar definition is a JavaScript array that contains the elements to be displayed in all toolbar rows available in
the editor. The following is an example:

config.toolbar = [

{ name: “document®, items: ["Source®", "-", "NewPage®", "Preview", "-",
"Templates®] },

{ name: “clipboard®, items: [“Cut®, “Copy", "Paste®, "PasteText",
"PasteFromWord®", "-", "Undo", "Redo”] %},

/.

{ name: “basicstyles®, items: ["Bold®, “ltalic®] }

1:

Here every toolbar group is given a name and their precise list of items is defined.

The above can also be achieved with a simpler syntax (see "Accessibility Concerns" later on):

config.toolbar = [

[“Source®, "-", “"NewPage®, "Preview", "-", "Templates®],
["Cut®, "Copy", "Paste", "PasteText", “PasteFromWord®", "-°, "Undo®, "Redo”],
I/I,

["Bold®, "ltalic”]
1;

Iltems separator can be included by adding *-" (dash) to the list of items, as seen above.

You can force row-breaks in the toolbar by adding */" between groups. They can be used to force a break at the
point where they were placed, rendering the next toolbar group in a new row.

The Benefits of "ltem by Item" configuration

The most evident benefit of this kind of configuration is that the position of every single item in the toolbar is under
control.

The drawbacks of "ltem by Item" configuration

The biggest problem it that there will be no automation when new plugins get installed. This means that, if any new
plugin get into your editor, you'll have to manually change your configurations, to include the plugin buttons at any
desired position.

Accessibility Concerns

The "name" used on every toolbar group will be used by assistive technology such as screen readers. That name
will be used by CKEditor too lookup for the "readable" name of each toolbar group in the editor language files (the
toolbarGroups entries).

Screen readers will announce each of the toolbar groups by using either their readable name, if available, or their
defined name attribute.

‘ Styles

The Styles Combo plugin adds the a combo to the CKEditor toolbar,

containing a list of styles. This list makes it easy to apply customized styles Contents

and semantic values to content created in the editor. -
1. Defining Styles

The entries available in the combo drop-down list can be easily 2. Style Rules

customized to suit your needs. 3. Style Types _
4. Stylesheet Parser Plugin

Defining Styles

The styles definition is a JavaScript array which is registered by calling the CKEDITOR.stylesSet.add function. A
unique name must be assigned to your style definition, so you can later configure each editor instance to load it.
This method lets you have a single style definition which is shared by several CKEditor instances present on the

page.

The following code shows how to register a sample style definition.

CKEDITOR.stylesSet.add("my_styles", [
// Block-level styles
{ name: "Blue Title", element: "h2", styles: { "color": "Blue” } },
{ name: "Red Title" , element: "h3", styles: { "color": "Red" } 1},

// Inline styles

{ name: °CSS Style", element: "span®, attributes: { "class": "my style® } },

{ name: "Marker: Yellow", element: "span®, styles: { "background-color”:
"Yellow™ } }

D:

The definition registration like the one above can be placed inline in the page source, or can live in an external file
which is loaded "on demand", when needed only (see below).

When the definitions are ready, you must instruct the editor to apply the newly registered styles by using the
stylesSet setting. This may be set in the config. js file, for example:

config.stylesSet = "my_styles”;

Using an External Styles Definition File

The style definition registration call can be included in an external JavaScript file. By default, CKEditor load the
style definition from styles. js file included in its installation folder.

Your style definition file can be saved in any place of your website (or somewhere in the Internet). You must,
however, know the URL required to reach it. For example, you can save the file at the root of your website, and
then call it as /styles. js, or place it anywhere else, and refer to it using its full URL, like
http://www.example.com/styles.js.

At that point, change the stylesSet setting to point the editor to your file:

config.stylesSet = "my_styles:/styles.js";

http://docs.ckeditor.com/?print=/guide/dev_styles-section-1
http://docs.ckeditor.com/?print=/guide/dev_styles-section-2
http://docs.ckeditor.com/?print=/guide/dev_styles-section-3
http://docs.ckeditor.com/?print=/guide/dev_styles-section-4
http://ckeditor.com/addon/stylescombo
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-stylesSet
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add

OR

config.stylesSet = "my_styles:http://www.example.com/styles.js";

The syntax for the style definition setting is always: style definition name : file URL.

Note that you must use the unique name you have used to register the style definition in the file.

Style Rules

The entries inside a style definition are called "style rules". Each rule defines the display name for a single style as
well as the element, attributes, and CSS styles to be used for it. The following is the generic representation for it:

{
name: “"Name displayed in the Styles drop-down list",
element: "HTML element name (for example *span™)-,
styles: {
"css-stylel”: "desired value®,
"css-style2”: "desired value®,
}
attributes: {
"attribute-namel®: “desired value®,
“"attribute-name2®: “"desired value®,
}
3

The name and element values are required, while other values are optional.

Style Types

There are three kinds of style types, each one related to the element used in the style rule:

» Block-level styles — applied to the text blocks (paragraphs) as a whole, not limited to the text selections.
These apply to the following elements: address, div, hl, h2, h3, h4, h5, h6, p, and pre.

» Object styles — applied to special selectable objects (not textual), whenever such selection is supported by
the browser. These apply to the following elements: a, embed, hr, img, 11, object, ol, table, td, tr and
ul.

» Inline styles — applied to text selections for style rules using elements not defined in other style types.

Stylesheet Parser Plugin

Another simplified method exists of customizing the styles for the document created in CKEditor and populating the
drop-down list with style definitions added in an external CSS stylesheet file. The Stylesheet Parser plugin lets you
use your existing CSS styles without the need to define the styles specifically for CKEditor in the format presented
above.

Having the Stylesheet Parser installed, you then need to supply the location of the CSS file that contains your style
definitions by using the contentsCss configuration setting:

config.contentsCss = “sample CSS file.css”;

Finally, if you want to skip loading the styles that are used in CKEditor by default, you may set stylesSet to an

http://ckeditor.com/addon/stylesheetparser
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-contentsCss

empty value:
config.stylesSet = [];

This solution lets you configure the editor to use existing CSS stylesheet rules without the need to create separate
style definitions for CKEditor. On the other hand, the previously used approach offers more control over which
styles are available for the users, so both solutions can be employed interchangeably, according to your needs.

Choosing the CSS Selectors

The plugin can be fine-tuned to only take into account the CSS selectors that match the
stylesheetParser_validSelectors configuration value. The default regular expression accepts all CSS rules in a form
of element.class, but you can modify it to refer to a limited set of elements, like in the example below.

// Only add rules for <p> and elements.
config.stylesheetParser_validSelectors = /\"™(p|span)\.\w+/;

Limiting the CSS Selectors

You can also customize by setting the stylesheetParser_skipSelectors configuration value. The plugin will then
ignore the CSS rules that match the regular expression and will not display them in the drop-down list nor use
them to output the document content. The default value excludes all rules for the <body> element as well as
classes defined for no specific element, but you can modify it to ignore a wider set of elements, like in the example
below.

// l1gnore rules for <body> and <caption> elements, classes starting with "high”,
and any class defined for no specific element.
config.stylesheetParser_skipSelectors = /("body\. |~caption\.|\.high|™\.)/1;

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-stylesheetParser_validSelectors
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-stylesheetParser_skipSelectors

s CKEditor 4 Documentation

‘ Introduction

Note: Advanced Content Filter was introduced in

CKEditor 4.1. Cantents
1. What is Advanced Content Filter (ACF)?
: ; o) 2. Automatic Mode
What is Advanced Content Filter (ACF)~ 5 G N

. . i) 4. Content Transformations
ACF is a highly configurable CKEditor core feature

available since CKEditor 4.1. It limits and adapts input

data (HTML code added in source mode or by the editor.setData method, pasted HTML code, etc.) so it matches
the editor configuration in the best possible way. It may also deactivate features which generate HTML code that is
not allowed by the configuration.

Advanced Content Filter works in two modes:

e automatic — the filter is configured by editor features (like plugins, buttons, and commands) that are enabled
with configuration options such as CKEDITOR.config.plugins, CKEDITOR.config.extraPlugins, and
CKEDITOR:.config.toolbar,

o custom - the filter is configured by the CKEDITOR.config.allowedContent option and only features that match
this setting are activated.

In both modes it is possible to extend the filter configuration by using the CKEDITOR.config.extraAllowedContent
setting.

If you want to disable Advanced Content Filter, set CKEDITOR.config.allowedContent to “true". All available editor
features will be activated and input data will not be filtered.

Automatic Mode

Advanced Content Filter works in automatic mode when the CKEDITOR.config.allowedContent setting is not
provided. During editor initialization, editor features add their rules to the filter. As a result, only the content that
may be edited using currently loaded features is allowed, and all the rest is filtered out.

The following example might make it easier to understand the automatic ACF mode.

1. Open the datafiltering.html sample from the Full or Standard CKEditor package (the set of features
offered by the Basic package is too limited).

2. Check editor 1. It uses the default configuration, so all buttons, keystrokes, or styles available in your package
are activated and editor contents are identical to what was originally loaded (except a small detail in the
Standard package — since it does not contain the Justify plugin, the footer is not aligned to the right).

3. Now check editor 4. You can see that many plugins and buttons were removed by the
CKEDITOR.config.removePlugins and CKEDITOR.config.removeButtons settings; the
CKEDITOR.config.format_tags list was trimmed down, too. Configuration changes are automatically reflected
in editor contents — there is no Image toolbar button, so there is no image in the contents; there is no Table
plugin, so the table added in the original contents was removed, too. You can see how the editor cleans up
pasted content or HTML code set in the source mode.

If you want to configure the editor to work in automatic mode, but need to enable additional HTML tags, attributes,
styles, or classes, use the CKEDITOR.config.extraAllowedContent configuration option.

Custom Mode

Advanced Content Filter works in custom mode when the CKEDITOR.config.allowedContent setting is defined.

http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-1
http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-2
http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-3
http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-4
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#method-setData
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-plugins
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-extraPlugins
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-toolbar
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-extraAllowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-removePlugins
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-removeButtons
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-format_tags
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-extraAllowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent

This configuration option tells the filter which HTML elements, attributes, styles, and classes are allowed. Based on
defined rules (called Allowed Content Rules) the editor filters input data and decides which features can be
activated.

Allowed Content Rules may be set in two different formats: the compact string format and the more powerful
object format. Read about Allowed Content Rules in the Allowed Content Rules article.

The following example might make it easier to understand the custom ACF mode.

1. Open the datafiltering.html sample from the Full or Standard CKEditor package (the set of features
offered by the Basic package is too limited).

2. Check editor 1. It uses the default configuration, so all buttons, keystrokes, or styles available in your package
are activated and editor contents are identical to what was originally loaded (except a small detail in the
Standard package — since it does not contain the Justify plugin, the footer is not aligned to the right).

3. Now check editor 2. The CKEDITOR.config.allowedContent option defines Allowed Content Rules using the
string format.

Note that since the rules do not allow the "s* element, the Strike Through button was removed from the
toolbar and the strike-through formatting was removed from the text. The same happened for example with the
Horizontal Line, Subscript, or Superscript features.

See also that the Styles and Format drop-down lists only contain the items which are defined in the Allowed
Content Rules.

What is more, options available in some dialog windows are limited, too. For example the Image dialog window
contains only the URL, Alternative Text, Width, and Height values, because only these attributes were defined
in CKEDITOR.config.allowedContent.

4. Additionally, editor 3 is configured by using a different set of rules defined in the object format.

Content Transformations

Advanced Content Filter not only removes disallowed HTML elements, their classes, styles, and attributes, but it
also tries to unify input data by transforming one form of an element to another, preferred form.

Consider the Bold feature. In HTML code it may be represented by , , or even a element. Suppose that the CKEDITOR.config.allowedContent
setting contains only a rule for the element. Does this mean that when pasting the or
element they will be removed?

No. The editor will transform all of them to elements. As a result the editor will contain only elements and
the the visual form of pasted content will be preserved. Exactly the same will happen if you leave the default
CKEDITOR:.config.allowedContent value (in automatic mode) — all Bold feature forms will be unified to the
preferred form.

Suppose that the "img[!src,alt,width,height]” setting (tag with required src and three optional
attributes) was added to Allowed Content Rules. Image size should be set with attributes, so for example a pasted
image whose size was set with styles will be transformed to an image with attributes (note that it will not be
possible in all scenarios — only pixel-based size can be transformed).

The content transformation feature is fully automatic and there is no need to configure it. The only thing you have
to do is set the CKEDITOR.config.allowedContent option or use the default value (automatic mode).

Currently, we have defined content transformations for only a handful of editor features, but their number will
increase in future releases.

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-2
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-2

s CKEditor 4 Documentation

‘ Allowed Content Rules

Note: Advanced Content Filter was introduced in CKEditor 4.1.
Contents

1. Introduction
2. String Format
3. Object Format

Introduction

Allowed Content Rules define which HTML elements, attributes, styles, and classes

are allowed. When configuring CKEditor you will be mostly interested in setting the
CKEDITOR:.config.allowedContent option. Plugin developers will also need to set
CKEDITOR:.feature.allowedContent properties which tell the editor what kind of content a feature allows in
automatic mode.

Allowed Content Rule usually consists of four main parts:

« the elements that it allows,

« the attributes that these elements may have,
» the styles that these elements may have,

» the classes that these elements may have.

Note: Instead of writing "attributes, styles, and classes", "properties"” will be used as a shorthand.

Multiple rules may exist for one element and one element may be included in numerous element lists. For example
each of the rules may allow another set of element properties.

Rules are applied one by one. Initially the element being filtered is invalid and all its properties are rejected. The
first rule applied to the element validates it (it will not be removed) and that rule may accept some element
properties. Another rule may cause the editor to accept further element properties. Therefore:

 If there are no rules for an element it is removed.
« It is possible to accept an element, but reject all its properties which will then be removed.
« Once validated, an element or its property cannot be invalidated by another rule.

String Format

The string format is a compact notation for Allowed Content Rules, but it does not offer all features available in the
object format. However, in most cases it should be sufficient.

Rule format:

elements [attributes]{styles}(classes)

Regexp pattern:
< elements >< styles, attributes, and classes
>< separator >
/N([a-z0-9*\s]+) ((? :\S*\{LIN\W\ -) \S*]+H\I\S* \S*\[LIN\WN\ - ,\S\F]H\]J\s* \s*\ ([T \w\ -
, \S*]+\)\s*){0,3}) (?:;\s*|$)/i,

Where:

 elements - a list of space-separated element names or an asterisk (*) character,

e attributes — a comma-separated list of attribute names or an asterisk (*) character,
» styles — a comma-separated list of style names or an asterisk (*) character,

» classes — a comma-separated list of classes or an asterisk (*) character.

http://docs.ckeditor.com/?print=/guide/dev_allowed_content_rules-section-1
http://docs.ckeditor.com/?print=/guide/dev_allowed_content_rules-section-2
http://docs.ckeditor.com/?print=/guide/dev_allowed_content_rules-section-3
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.feature#property-allowedContent
http://docs.ckeditor.com/?print=/guide/dev_advanced_content_filter-section-2

Special characters:

o Asterisk used in the element list means: "This rule accepts the following properties for all elements, but not the
elements themselves; there has to be another rule accepting these elements explicitly".

» Asterisk used in the property list means: "Accept all properties”.

o Exclamation mark (1) used before an item name (e.g.: [Yhref]) in the property list means: "This property is
required. If an element does not have it, this rule should not be applied to the element (so the element will not
be validated by it)".

Examples:

// A rule accepting <p> and <hl> elements, but without any property.
p hl

// A rule accepting <p> and <hl> elements with optional "left" and "right"
classes.

// Note: Both elements may contain these classes, not only <hl>.

p hi(left,right)

// A rule accepting <p> and <hl> elements with all their attributes.
p hi[*]

// A rule accepting <a> only if it contains the "href" attribute.
a['href]

// A rule accepting with a required "src'" attribute and an optional "alt"
attribute plus optional "width" and "height" styles.
img[alt, Isrc]{width,height}

// The same as above, because the order of properties and their lists is
irrelevant and white-spaces are ignored.
img { height, width } [!Isrc, alt]

The Allowed Content Rules set may consist of many rules separated by semicolon (;) characters. Examples:

// Rules allowing:

// * <p> and <hl> elements with an optional "text-align" style,
// * <a> with a required "href" attribute,

// * and elements,

// * <p> with an optional "tip"” class (so <p> element may contain
// a "text-align" style and a "tip" class at the same time).

p hi{text-align}; a['href]; strong em; p(tip)

// Rules allowing:

// * <p> and <hl> elements with an optional "id" attribute,

// * <a> with a required "href"” attribute and an optional "id" attribute.
p hl; a[thref]; *[id]

Debugging
In order to verify if Allowed Content Rules were parsed correctly, you can check the
CKEDITOR: :filter.allowedContent property of the CKEDITOR.editor.filter object.

var editor = CKEDITOR.replace("textarea_id", {
allowedContent: "a['href]; ul; li{text-align}(someclass)*

¥})s

http://docs.ckeditor.com/?print=/api/CKEDITOR.filter#property-allowedContent
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#property-filter
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

editor.on("instanceReady®, function() {
console.log(editor.filter.allowedContent);

}):

// This will log the following array:

// { elements: "p br*, ... } (default editor rules)

// { elements: "a", attributes: “!'href" }

// { elements: “ul” }

// { elements: "li", styles: "text-align®, classes: "someclass” }

Object Format

For the convenience of the users Allowed Content Rules can be defined as a standard object literal so the
following:

allowedContent: "p hl{text-align}; a['href]; strong em; p(tip)"
correspond with:

allowedContent: {

p hi®: {

styles: "text-align®
3,
a: {

attributes: "“Thref"
3,
"strong em": true,
p: {

classes: "tip

}
}

With this approach, Allowed Content Rules can be dynamically generated by JavaScript or stored for any purposes
in JSON data format. Note that keys of object literals must be unique, so:

allowedContent: {

p- {

styles: “text-align-
}.
p: {

classes: "tip

}
}

is an equivalent of:

allowedContent: "p(tip)*

but never:

allowedContent: “p{text-align}(tip)”

s CKEditor 4 Documentation

‘ Output Formatting

CKEditor offers a powerful and flexible output formatting system. It gives
developers full control over what the HTML code produced by the editor will Contents
Iqok like. The system makes it possible to control all HTML tags and can give a 1. The HTML Writer
different result for each one of them. . .
2. Setting Writer Rules

The HTML Writer

The HTML Writer plugin makes it possible to generate advanced formatted output with CKEditor.

The "writer" is used by the CKEDITOR.htmIDataProcessor class to write the output data. Therefore, the current
writer for a specific editor instance can be retrieved with the editor.dataProcessor.writer property.

It is possible to configure several output formatting options by setting the writer properties. The following example
summarizes the most used of them, giving their default values:

var writer = editor.dataProcessor.writer;

// The character sequence to use for every indentation step.
writer.indentationChars = “\t";

// The way to close self closing tags, like
.
writer._selfClosingEnd = = />%;

// The character sequence to be used for line breaks.
writer . lineBreakChars = "\n~";

// The writing rules for the <p> tag.

writer.setRules("p", {
// Indicates that this tag causes indentation on line breaks inside of it.
indent: true,

// Inserts a line break before the <p> opening tag.
breakBeforeOpen: true,

// lInserts a line break after the <p> opening tag.
breakAfterOpen: true,

// Inserts a line break before the </p> closing tag.
breakBeforeClose: false,

// lInserts a line break after the </p> closing tag.

breakAfterClose: true

D:

Setting Writer Rules

Because the writer is a property of each editor instance, and also due to its dependency on the writer plugin to be
loaded, the best way to modify it is by listening to the CKEDITOR.instanceReady event, so it is safe to assume that

http://docs.ckeditor.com/?print=/guide/dev_output_format-section-1
http://docs.ckeditor.com/?print=/guide/dev_output_format-section-2
http://ckeditor.com/addon/htmlwriter
http://docs.ckeditor.com/?print=/api/CKEDITOR.htmlDataProcessor
http://docs.ckeditor.com/?print=/api/CKEDITOR.htmlDataProcessor#property-writer
http://docs.ckeditor.com/?print=/api/CKEDITOR#event-instanceReady

the CKEDITOR.editor.dataProcessor property will be loaded and ready for changes. The following code shows an
example of this approach used when creating an editor instance:

CKEDITOR.replace("editorl®, {
on: {
instanceReady: function(ev) {

// Output paragraphs as <p>Text</p>.

this.dataProcessor . _writer.setRules("p", {
indent: false,
breakBeforeOpen: true,
breakAfterOpen: false,
breakBeforeClose: false,
breakAfterClose: true

D:

}
D:

Another method is to use the CKEDITOR object, so all editor instances will be changed:

CKEDITOR.on("instanceReady®, function(ev) {
// Ends self closing tags the HTML4 way, like
.
ev.editor.dataProcessor .writer._selfClosingEnd = ">%;

s

http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#property-dataProcessor
http://docs.ckeditor.com/?print=/api/CKEDITOR
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

s CKEditor 4 Documentation

‘ Spell Checking

CKEditor can be configured to use either native spell checking
capabilities provided by the browser or to use an external spell
checking web service.

Contents

1. The Native Spell Checker
2. The SpellCheckAsYouType Plugin

The Native SpeII Checker 3. The WebSpellChecker Plugin

Native spell check functionality is by default disabled in the editor, use disableNativeSpellChecker to enable it:
config.disableNativeSpelIChecker = false;

You should be able to see the spelling underline in content after reloading the editor.

Note: If the context menu plugin is enabled, its necessary to hold the CTRL key when right-clicking misspelled
words to see their suggestions.

Note: The spell check is not generically available for all browsers.

The SpellCheckAsYouType Plugin

The SpellCheckAsYouType (SCAYT) plugin provides inline spell checking, much like the native spell checker, well
integrated with the CKEditor context menu.

It is provided by WebSpellChecker.net. It users their web-services, transferring the text to their servers and
performing spell checking. This is a cross browser solution.

The WebSpellChecker Plugin

The WebSpellChecker plugin is another spell checking solution provided by WebSpellChecker.net that instead runs
the check through a dialog windows, instead of marking misspelled words inline.

http://docs.ckeditor.com/?print=/guide/dev_spellcheck-section-1
http://docs.ckeditor.com/?print=/guide/dev_spellcheck-section-2
http://docs.ckeditor.com/?print=/guide/dev_spellcheck-section-3
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-disableNativeSpellChecker
http://ckeditor.com/addon/scayt
http://www.webspellchecker.net/
http://ckeditor.com/addon/wsc
http://www.webspellchecker.net/

s CKEditor 4 Documentation

‘ Integrate with File Browser

CKEditor can be easily integrated with an external file browser/uploader.

Contents
Once properly set up, all file browser features will automatically become . i i
available. This includes the Upload tab (1) in the Link, Image, and 1. Basic Configuration
Flash Properties dialog windows as well as the Browse Server button 2. File Browser Window Size
) 3. Using CKFinder
4. Other Resources
Image Properties &
1
Image Info Link Upload Advanced
2
URL { }
Alternative Text
Width Freview
|:| Lorem ipsum dolor sit amet, consectetuer -
Height a o adipiscing elit. Maecenas feugiat consequat diam. [
|:| Maecenas metus. Vivamus diam purus, cursus a,
commaodo non, facilisis vitag, nulla. Aenean dictum | =
Border lacinia tortor. Nunc iaculis, nibh non iaculis

aliguam, orci felis euismod negque, sed arnare

massa mauris sed velit. Mulla pretium mi et risus.
Fusce mi pede, tempaor id, cursus ac, ullamcorper
nec, enim. Sed tortor. Curabitur molestie. Duis velit
WSpace augue, condimentum at, ultrices a, luctus ut, arci.
Donec pellentesque egestas eros. Integer cursus,
augue in cursus faucibus, eros pede bibendum R

=notset= || 4 r

4

Basic Configuration

« The filebrowserBrowseUrl setting contains the location of an external file browser that should be launched
when the Browse Server button is pressed.

« The filebrowserUploadUrl setting contains the location of a script that handles file uploads. If set, the Upload
tab will appear in some dialog windows — the ones where such functionality is available, i.e. Link, Image and
Flash Properties.

Example 1

The sample below shows basic configuration code that can be used to insert a CKEditor instance with the file
browser configured.

CKEDITOR.replace(“editorl®, {

http://docs.ckeditor.com/?print=/guide/dev_file_browse_upload-section-1
http://docs.ckeditor.com/?print=/guide/dev_file_browse_upload-section-2
http://docs.ckeditor.com/?print=/guide/dev_file_browse_upload-section-3
http://docs.ckeditor.com/?print=/guide/dev_file_browse_upload-section-4
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-filebrowserBrowseUrl
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-filebrowserUploadUrl
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

filebrowserBrowseUrl : "/browser/browse.php®,
filebrowserUploadUrl : "/uploader/upload.php®

P

Example 2
It is also possible to set a separate URL for a selected dialog window by using the dialog window name in file
browser settings: filebrowserBrowseUrl and filebrowserUploadUrl.

For example to set a special upload URL for the image dialog window, use the filebrowserlmageUploadUrl
property.

CKEDITOR.replace(“editorl®, {
filebrowserBrowseUrl : "/browser/browse.php®,
filebrowserlmageBrowseUrl : "/browser/browse.php?type=Images”,
filebrowserUploaduUrl : "/uploader/upload.php®,
filebrowserlmageUploadUrl : */uploader/upload.php?type=Images”

¥

In the example above, the FilebrowserBrowseUrl and filebrowserUploadUrl settings will be used by
default. In the Image Properties dialog window CKEditor will use the filebrowserlImageBrowseUrl and
filebrowserlImageUploadUrl configuration settings instead.

File Browser Window Size

The default width of the file browser window in CKEditor is set to 80% of the screen width, while the default height
is set to 70% of the screen height.

If for any reasons the default values are not suitable for you, you can adjust them to your needs by using the
filebrowserWindowWidth to change the width and filebrowserWindowHeight to change the height of the window.

To specify the size of the file browser window in pixels, set it to a number (e.g. "800"). If you prefer to set the
height and width of the window as a percentage value of the screen, do not forget to add the percent sign after the
number (e.g. *'60%"").

Example 3

The sample below shows basic configuration code that can be used to insert a CKEditor instance with the file
browser paths and window size configured.

CKEDITOR.replace(“editorl®, {
filebrowserBrowseUrl : "/browser/browse.php®,
filebrowserUploadUrl : "/uploader/upload.php”,
filebrowserWindowWidth: "640°7,
filebrowserWindowHeight: “480°

D:

To set the window size of the file browser for a specific dialog window, use the FilebrowserWindowWidth and
filebrowserWindowHeight settings.

For example, to change the file browser window size only in "Image" dialog box, change set the
TilebrowserImageWindowWidth and filebrowser ImageWindowHeight settings.

Example 4

The sample below shows basic configuration code that can be used to insert a CKEditor instance with the file
browser paths configured. It also changes the default dimensions of the file browser window, but only when opened

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-filebrowserImageUploadUrl
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-filebrowserWindowWidth
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-filebrowserWindowHeight
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

from the Image Properties dialog window.

CKEDITOR.replace("editorl®, {
filebrowserBrowseUrl: "/browser/browse.php”,
filebrowserUploadUrl : */uploader/upload.php®,
filebrowserlmageWindowWidth: 640",
filebrowserImageWindowHeight: 480"

D:

Using CKFinder

CKEditor may easily be integrated with CKFinder, an advanced Ajax file browser. For a live demonstration, see
here.

The integration may be conducted in two ways: by setting CKEditor configuration options (example below) or by
using the CKFinder.SetupCKEditor() method available in the CKFinder API.

Example 5

The sample below shows the configuration code that can be used to insert a CKEditor instance with CKFinder
integrated. The browse and upload paths for images and Flash objects are configured separately from CKFinder
default paths.

CKEDITOR.replace("editorl®, {
filebrowserBrowseUrl : "/ckfinder/ckfinder.html®,
filebrowserlImageBrowseUrl : */ckfinder/ckfinder._html?Type=Images”,
filebrowserFlashBrowseUrl : "/ckfinder/ckfinder.html?Type=Flash®,
filebrowserUploadUrl: "/ckfinder/core/connector/php/connector .php?
command=QuickUpload&type=Files”,
filebrowserlmageUploadUrl: */ckfinder/core/connector/php/connector.php?
command=QuickUpload&type=Images”,
filebrowserFlashUploadUrl : "/ckfinder/core/connector/php/connector.php?
command=QuickUpload&type=Flash*

D:

The example above is valid for PHP environment. Note that /ckfinder/ is a base path to the CKFinder
installation directory.

If you are using CKFinder for ASP, ASP.NET, or ColdFusion, remember to change php above to the right
extension:

e asp — CKFinder for ASP
e aspx — CKFinder for ASP.NET
» cfm — CKFinder for ColdFusion
e php — CKFinder for PHP

Example 6
The sample below shows the use of the CKFinder.SetupCKEditor() to insert a CKEditor instance with
CKFinder integrated.

var editor = CKEDITOR.replace("editorl”);
CKFinder .SetupCKEditor(editor, "/ckfinder/");

The second parameter of the SetupCKEditor() method is the path to the CKFinder installation.

http://ckfinder.com/
http://ckfinder.com/demo
http://docs.ckeditor.com/[http://docs.cksource.com/ckfinder_2.x_api/symbols/CKFinder.html#.setupCKEditor
http://docs.cksource.com/ckfinder_2.x_api/
http://docs.ckeditor.com/CKFinder/Developers_Guide/ASP/CKEditor_Integration
http://docs.ckeditor.com/CKFinder/Developers_Guide/ASP.NET/CKEditor_Integration
http://docs.ckeditor.com/CKFinder/Developers_Guide/ColdFusion/CKEditor_Integration
http://docs.ckeditor.com/CKFinder/Developers_Guide/PHP/CKEditor_Integration
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

Please check the _samples/js/ckeditor.html sample distributed with CKFinder to see the full working
example of this integration method.

Image Properties [E%

Image Infa Link Upload Advanced

URL
luseresimagesEanhEanhl jpg m
Altamiative Tex { @ cxFinder 2 - Mozilla Firefox e 5 S
1l & hitpsffckeditorcom/a ckfinder/2.0.1/ckfinder.htmlType=Images&CKEditor=editi I
1':1?' Bl | e m/apps/ f20.1/ck ype=Imag
o Ffresh Semings Adl Help
Heignt 4 © Folders
150 = Imagas [
Border '—_IEMh
| & _J Flowers
HSpace ® 3 Moon
& 3 Public Folder

VEpace I % 1 Sun

amet, consectetuer adipiscig)] Basket Eanh3 jpg
Algnment feuoial congequal diam I.In1n AM WIR2011 218 AM

i Devemiosd IKB
=notset= [=]

x|

Eaih5.jpg
1312011 218 AM - 13172041 2:18 AM
GHB 268 KB

Earth1 jpg (KB, 1/31/2011 2-18 AM)

PHP API
As of CKFinder 1.4.2 and CKEditor 3.1 it is possible to integrate CKFinder with CKEditor using the PHP API.

See CKFinder for PHP documentation for more details.

Other Resources

For more advanced information on integrating CKEditor with a file browser refer to the following articles:

e Creating a Custom File Browser
e Adding the File Browser to Dialog Windows

http://docs.cksource.com/CKFinder_2.x/Developers_Guide/PHP/CKEditor_Integration#PHP

s CKEditor 4 Documentation

‘ File Browser API

CKEditor can be easily integrated with your own file

browser. Contents

To connect a file browser that is already compatible 1. Interaction Between CKEditor and File Browser
with CKEditor (like CKFinder), follow the File 2. Passing the URL of the Selected File
Browser (Uploader) documentation.

Interaction Between CKEditor and File Browser

CKEditor automatically sends some additional arguments to the file browser:

o CKEditor — name of the CKEditor instance,

« langCode — CKEditor language (en for English),

e CKEditorFuncNum — anonymous function reference number used to pass the URL of a file to CKEditor (a
random number).

For example:

CKEditor=editorl&CKEditorFuncNum=1&langCode=en

Example 1
Suppose that CKEditor was created using the following JavaScript call:

CKEDITOR.replace("editor2®, {
filebrowserBrowseUrl : "/browser/browse.php?type=Images”,
filebrowserUploadUrl : "/uploader/upload.php?type=Files”

¥
In order to browse files, CKEditor will call:

/browser/browse . php?type=Images&CKEditor=editor2&CKEditorFuncNum=2&langCode=de

The call includes the following elements:

e /browser/browse.php?type=Images — the value of the filebrowserBrowseUrl parameter,
o &CKEditor=editor2&CKEditorFuncNum=2&langCode=de — the information added by CKEditor:
 CKEditor=editor2 - the name of a CKEditor instance (editor?2),
o CKEditorFuncNum=2 — the reference number of an anonymous function that should be used in the
callFunction,
« langCode=de — language code (in this case: German). This parameter can be used to send localized
error messages.

Passing the URL of the Selected File

To send back the file URL from an external file browser, call CKEDITOR.tools.callFunction and pass
CKEditorFuncNum as the first argument:

http://docs.ckeditor.com/?print=/guide/dev_file_browser_api-section-1
http://docs.ckeditor.com/?print=/guide/dev_file_browser_api-section-2
http://ckfinder.com/
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#property-name
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#property-langCode
http://docs.ckeditor.com/?print=/api/CKEDITOR.tools#method-callFunction
http://docs.ckeditor.com/?print=/api/CKEDITOR.tools#method-callFunction
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace
http://docs.ckeditor.com/?print=/api/CKEDITOR#method-replace

window . opener .CKEDITOR . tools.callFunction(funcNum, FfileUrl [, data]);

If data (the third argument) is a string, it will be displayed by CKEditor. This parameter is usually used to display
an error message if a problem occurs during the file upload.

Example 2
The following example shows how to send the URL from a file browser using JavaScript code:

// Helper function to get parameters from the query string.

function getUrlParam(paramName) {
var reParam = new RegExp("(?:[\?&]]&)" + paramName + “"=(["&]+)", "i°) ;
var match = window. location.search.match(reParam) ;

return (match && match.length > 1) ? match[1] : null ;
+
var funcNum = getUrlParam(“CKEditorFuncNum®);
var FileUrl */path/to/file.txt";
window . opener .CKEDITOR . tools . callFunction(funcNum, fileUrl);

Example 3
The following code shows how to send back the URL of an uploaded file from the PHP connector:

<?php

// Required: anonymous function reference number as explained above.

$funcNum = $_GET["CKEditorFuncNum®] ;

// Optional: instance name (might be used to load a specific configuration file
or anything else).

$CKEditor = $ GET["CKEditor"]

// Optional: might be used to provide localized messages.

$langCode = $ GET["langCode"] ;

// Check the $_FILES array and save the file. Assign the correct path to a
variable ($url).

$url = "/path/to/uploaded/file.ext" ;

// Usually you will only assign something here if the file could not be
uploaded.

$message = ;

echo *“<script
type="text/javascript">window.parent.CKEDITOR.tools.callFunction($funcNum, “"$url-®,
"$message”) ;</script>";
?>

Example 4
If data is a function, it will be executed in the scope of the button that called the file browser. It means that the
server connector can have direct access CKEditor and the dialog window to which the button belongs.

Suppose that apart from passing the fileUrl value that is assigned to an appropriate field automatically based on
the dialog window definition you also want to set the alt attribute, if the file browser was opened in the Image
Properties dialog window. In order to do this, pass an anonymous function as a third argument:

window . opener .CKEDITOR . tools.callFunction(funcNum, FfileUrl, function() {
// Get the reference to a dialog window.

var element,
dialog = this.getDialog();
// Check if this is the Image dialog window.
if (dialog.getName() == “image”) {
// Get the reference to a text field that holds the "alt'" attribute.
element = dialog.getContentElement("info", "txtAlt");
// Assign the new value.
if (element)
element.setValue("alt text");

}

// Return false to stop further execution - in such case CKEditor will ignore
the second argument (FileUrl)

// and the onSelect function assigned to a button that called the file browser
(iT defined).
[return false;]

P

s CKEditor 4 Documentation

‘ Adding File Browser to Dialog

CKEditor can be easily integrated with your own file browser.
Contents

To connect a file browser that is already compatible with CKEditor (like

CKFinder), follow the File Browser (Uploader) documentation. 1. Dialogs

2. Filebrowser Plugin
Dialogs

Please refer to the Dialog definition API for general help on how to create a dialog box.

Filebrowser Plugin

The Filebrowser plugin is built-in into CKEditor. It's only purpose is to provide an API inside of CKEditor to
easily integrate any external file browser with it and to add file browser features to various CKEditor components
(usually to dialogs).

Adding "Browse Server" button
To assign the filebrowser plugin to an element inside of a dialog box, set the "filebrowser" property. For example in
the 1mage plugin source there is:

{
type: “button-®,

hidden: true,
id: “"browse”,
filebrowser: “Link:txtUrl®,
label : editor. lang.common.browseServer,
style: "float:right”,
}.

This button will be hidden by default (hidden:true). The filebrowser plugin looks for all elements with the
filebrowser attribute and unhides them if appropriate configuration setting is available
(filebrowserBrowseUrl/filebrowserUploadUrl).

The action performed by the plugin depends on the element type, for fileButton it is QuickUpload, for other
elements the default action is Browse. In the example above, the file browser will be launched (in a popup) when
button is clicked.

The "Link:txtUrl" value instructs the plugin to update an element with id txtUr1 inside of the Link tab when
CKEDITOR.tools.callFunction(funcNum) is called (see Custom File Browser).

Adding "Quick Upload" support
Again, to see how we can handle file uploads in our dialog box, we'll use working example from CKEditor. In the
image plugin there is a definition of the Upload tab:

{
id: “"Upload®,
hidden: true,
filebrowser: “uploadButton®,

http://docs.ckeditor.com/?print=/guide/dev_dialog_add_file_browser-section-1
http://docs.ckeditor.com/?print=/guide/dev_dialog_add_file_browser-section-2
http://ckfinder.com/
http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition
http://docs.ckeditor.com/?print=/guide/dev_file_browse_upload-section-1
http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition.fileButton
http://docs.ckeditor.com/?print=/api/CKEDITOR.tools#method-callFunction

label : editor.lang. image.upload,
elements: [
{

type: “fTile",
id: “upload”,
label : editor.lang. image.btnUpload,
style: “height:40px~,
size: 38

type: “fileButton-,

id: “uploadButton-®,

filebrowser: "info:txtUrl",

label : editor.lang. image.btnUpload,
for: ["Upload®, “upload®]

3}

This example is a little bit more complicated than the previous one, because 1) we have here a definition of the
whole tab 2) we need two elements: file and fileButton to upload a file.

In the example above, the id of atab is "Upload”. It is hidden by default (hidden:true). As already mentioned,
the filebrowser plugin looks for all elements with the filebrowser attribute and unhides them if appropriate
configuration setting is available. In this case, the tab will be unhidden automatically if a filebrowser setting for
“"uploadButton® (because of filebrowser: “"uploadButton®) will be available (FilebrowserUploadUrl).

The File element is simple and doesn't need to be explained, it is just an input element that will store the name of
a file that will be uploaded.

The FileButton element is more interesting. The "info:txtUrl " value instructs the filebrowser plugin to
update an element with id txtUrl inside of the info tab when CKEDITOR.tools.callFunction(funcNum)
is called (see Custom File Browser). The "for®": [“"Upload®, "upload® 7] line is used to connect fileButton
with file element. It is an instruction for CKEditor to upload a file using the "File" element with id "upload*®
(second value) inside of the "Upload” tab (first value).

Advanced configuration (Browsing)
It is possible to define your own function that will be called when file is selected/uploaded.

{
type: “button®,
hidden: true,
id: "idO",
label : editor. lang.common.browseServer,
filebrowser: {
action: “Browse-",
// target: “tabl:idl-,
onSelect: function(fileUrl, data) {
alert("The selected file URL is "" + fileUrl + """);

for (var _info in data)
alert(“data[" + _info + *"]* + * = * + data[_info]);

var dialog = this.getDialog();
dialog.getContentElement(“tabl®, "idl").setValue(data[“fileUrl"]

http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition.file
http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition.fileButton
http://docs.ckeditor.com/?print=/api/CKEDITOR.tools#method-callFunction

// Do not call the built-in onSelect command
return false;

}

In this example we're setting the action to 'Browse' to call the file browser when button is clicked. " target” is not
required, because we'll update the target element in the custom onSelect function.

As explained in the documentation, we have called CKEDITOR.tools.callFunction(funcNum, fileUrl,
data); when user selected a file. The fileUrl and data arguments are passed to our custom onSelect function
and we can use it to update the target element.

Advanced configuration (Quick Uploads)
In a similar way like we configured the button to open the file browser, we can configure the fileButton.

{
type: “fTile”",
label - editor.lang.common.upload,
labellLayout: “vertical”,
id: "id2-
}.
{

type: “fileButton®,
label : editor.lang.common.uploadSubmit,
id: "id3",
filebrowser: {
action: "QuickUpload”,
params: { type: "Files", currentFolder: "/folder/" },
target: “tabl:idl-,
onSelect: function(fileUrl, errorMessage) {
alert("The url of uploaded file is: " + FfileUrl + "\nerrorMessage: " +
errorMessage);
// Do not call the built-in onSelect command
// return false;
}
3,
*for®: [“tabl®, "id2"]

In the Filebrowser.params attribute we can add additional arguments to be passed in the query string to the
external file browser. Fi lebrowser . target is the target element to be updated when file is returned by the
server connector (uploader) - we don't need it if we define our own onSelect function
(Filebrowser.onSelect) and update the target element in this function, just like we did in previous example.

http://docs.ckeditor.com/?print=/api/CKEDITOR.tools#method-callFunction

‘ Plugins

CKEditor is totally based on plugins. In fact, the editor
core is an empty box, which is them filled with features
provided by plugins. Even the editor interface, like
toolbars, buttons and the editing area are plugins.

Contents

1. Where to look for plugins?
2. Creating a Custom Editor with CKBuilder

The default installation of CKEditor, that you probably are 3. Installing Plugins Manually

using now, comes with a set of plugins present on it. You
can add plugins into your editor, bring nice and useful
features for your users.

Where to look for plugins?

The CKEditor Add-ons Repository is an online service designed to find and share plugins. It makes it easy to
understand the plugins features and to socialize with the CKEditor community. It's also the best place to showcase
your skills and reach a large user base, if you are a plugin developer.

Creating a Custom Editor with CKBuilder

CKBuilder is the sister service of the CKEditor Add-ons Repository, making it possible to create a customized
editor, by selecting plugins the plugins that best fit your needs.

Through the navigation of the add-ons repository, you'll be able to use the "Add to my editor button" to send your
preferred plugins to your custom editor. Once done, you can simply download it an enjoy an editing experience that
is perfect for your needs.

Installing Plugins Manually

If you prefer not to use CKBuilder, if you have plugins developer by yourself of by third parties or if you just want to
test plugins before going through the CKBuilder process, you can also add plugins to your local installation, by
following a few steps:

1. Extracting the zip file: Plugins are usually available as zip files. So, to start, be sure to have the zip extracted
into a folder.

2. Copying the files into CKEditor: The easiest way to install the files is by simply copying them into the
plugins folder of your CKEditor installation. They must be placed into a sub-folder that matches the
"technical" name of the plugin. For example, the Magic Line plugin would be installed into this folder:
<CKEditor folder>/plugins/magicline.

3. Enabling the plugin: Now it is time to tell CKEditor that you have a new plugin for it. For that, you simply use
the extraPlugins configuration option:

config.extraPlugins = "magicline”;

That's all. Your plugin will be now enabled in CKEditor.

http://docs.ckeditor.com/?print=/guide/dev_plugins-section-1
http://docs.ckeditor.com/?print=/guide/dev_plugins-section-2
http://docs.ckeditor.com/?print=/guide/dev_plugins-section-3
http://ckeditor.com/addons/plugins
http://ckeditor.com/addon/magicline
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-extraPlugins

‘ Skins

The CKEditor user interface look and feel can be
totally customized through skins. Elements like the
toolbar, dialogs, buttons and even their icons, can be
changed to match your preferred style.

Contents

1. Where to look for skins?
2. Downloading CKEditor with your preferred skin

The default installation of CKEditor comes with the 3. Installing Skins Manually

Moono skin.

Where to look for skins?

The CKEditor Add-ons Repository is an online service designed to find and share skins. It's also the best place to
showcase your skills and reach a large user base, if you are a skin developer.

Downloading CKEditor with your preferred skin

CKBuilder is the sister service of the CKEditor Add-ons Repository, making it possible to create a customized
editor with any skin you want.

Installing Skins Manually

If you prefer not to use CKBuilder, if you have skins developed by yourself of by third parties or if you just want to
test skins before going through the CKBuilder process, you can also add skins to your local installation, by
following a few steps:

1. Extracting the zip file: Skins are usually available as zip files. So, to start, be sure to have the zip extracted
into a folder.

2. Copying the files into CKEditor: The easiest way to install the files is by simply copying them into the skins
folder of your CKEditor installation. They must be placed into a sub-folder that matches the "technical" name
of the skin. For example, the Kama skin would be installed into this folder: <CKEditor
folder>/skins/kama.

3. Enabling the plugin: Now you must just setup CKEditor, by using the skin configuration option:
config.skin = "kama“ ;

That's all. The new skin will be now enabled in CKEditor.

http://docs.ckeditor.com/?print=/guide/dev_skins-section-1
http://docs.ckeditor.com/?print=/guide/dev_skins-section-2
http://docs.ckeditor.com/?print=/guide/dev_skins-section-3
http://ckeditor.com/addon/moono
http://ckeditor.com/addons/skins
http://ckeditor.com/builder
http://ckeditor.com/addon/kama
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-skin

s CKEditor 4 Documentation

‘ Getting the Source Code

Working with the source code of CKEditor may be useful. These are some

possible situations that you may face: Contents

1. Cloning from GitHub

e You're developing plugins or skins, so you can build your own
2. Performance

distributions.
« You're assembling and editor "by hand", by adding plugins and skins to it
manually.
e You want to understand better the CKEditor API by simply reading the code.
e You want to fix an issue. (Yes, do it!)

Cloning from GitHub

The CKEditor source code is available in the ckeditor-dev git repository, hosted at GitHub.

Having git installed in your system, it's enough to call the following at the command line to have your local copy:
git clone https://github.com/ckeditor/ckeditor-dev.git

It'll download the full CKEditor development code into the ckeditor-dev folder.

Performance

Note that the source code version of CKEditor is not optimized for production websites. It works flawlessly on a
local computer or network, but a simple sample file can download more than two hundred files and more than one
megabyte.

Because of this do not use the source code version of CKEditor in production websites.

Once your local development is completed, be sure to build CKEditor, making it perfect for distribution.

http://docs.ckeditor.com/?print=/guide/dev_source-section-1
http://docs.ckeditor.com/?print=/guide/dev_source-section-2
https://github.com/ckeditor/ckeditor-dev

s CKEditor 4 Documentation

‘ Build from Source Code

If you're working with the source code of CKEditor in your

computer or local network, at some stage you'll have to distribute Contents
it into test or production websites. 1. The dev/builder Eolder
Never distribute the source version of CKEditor into 2o Sip L BUll Sty
production websites. There are serious performance 3. Step 2: Running the Builder
4. About CKBuilder (Command Line)

implications on doing this.

Instead, you must create a CKEditor "build" or "release version”
(in contrast to "source version"). It is an optimized production ready CKEditor distribution.

The dev/builder Folder

The source code of CKEditor contains a pre-configured environment so you can easily create CKEditor builds.
The following are the files that are most relevant:

e build.sh: the build runner bash script.
e build-config.js: the build configuration file.

Step 1: Build Setup

You should edit the build-config. js file, which contains the build configuration. It has the following sections:

var CKBUILDER _CONFIG = {
// Skin name.

skin: "...%,

// Files to be ignored.
ignore: [... 1,

// Plugins to be included.
plugins: { ... }
}:

The most important parts of the file is the skin name and the list of plugins. Be sure to have them properly set,
with the things you really want in your build.

You don't need to include all plugins into that list. CKBuilder will discover their dependencies and load them as
well.

Step 2: Running the Builder
There is little to add now. Simply go to the command line and call the build script:
sh build.sh

The builder will be executed and the resulting build will be created in the dev/bui lder/bui Id folder.

http://docs.ckeditor.com/?print=/guide/dev_build-section-1
http://docs.ckeditor.com/?print=/guide/dev_build-section-2
http://docs.ckeditor.com/?print=/guide/dev_build-section-3
http://docs.ckeditor.com/?print=/guide/dev_build-section-4
http://docs.ckeditor.com/?print=/guide/dev_source-section-2
http://docs.ckeditor.com/?print=/guide/dev_source-section-2

About CKBuilder (Command Line)

The building process is handled by the command line version of CKBuilder. It is a powerful application that makes
several enhancement to the source code. It loads the configuration file, discover plugin dependencies, merge and
minify files, create icon strips and perform many other tasks.

For the first run, bui Id.sh will download CKBuilder, if not available, and copy it into the
dev/builder/ckbuilder/<ckbuilder version> folder. Therefore, Internet connection is required. Once the
file is available, no more downloads are required (but still the script tries to update it, if possible).

The only requirement to run CKBuilder is Java.

http://download.cksource.com/CKBuilder/
http://www.java.com/en/download/

s CKEditor 4 Documentation

‘ Basic Configuration and Customization

How Do | Change the Sl

Defal_“t CK.EdI'[OI’ 1. How Do | Change the Default CKEditor Configuration?
COﬂfIgUI’a'[IOI’]? 2. How Do | Find the CKEditor Configuration Settings to Change?

3. How Do | Remove Unneeded CKEditor Functionality?
CKEditor is a highly flexible tool 4. How Do | Find Code Examples Showing CKEditor Customization?
that you can easily customize to
your needs. If you want to
change the editor configuration, refer to the Setting Configuration page from the Developer's Guide. Your custom

configuration will help you adjust the CKEditor look and feel to the requirements of your project.

How Do | Find the CKEditor Configuration Settings to Change?

A full listing of configuration settings that you can change in order to customize the editor to your needs can be
found in the CKEditor JavaScript API. Use the methods described in the Setting Configuration article from the
Developer's Guide.

How Do | Remove Unneeded CKEditor Functionality?

CKEditor is a truly flexible tool with a modular structure — most editor functionality is based on plugins. Some core
plugins are necessary for the editor to work or depend on one another, however, there are lots of optional plugins
that you can skip when you do not need the functionality that they provide.

If you want to disable some functionality that comes from a CKEditor plugin, you can use the
CKEDITOR:.config.removePlugins setting to prevent the plugin from loading.

// Remove one plugin.
config.removePlugins = “elementspath”;

// Remove multiple plugins.
config.removePlugins = “elementspath,save, font" ;

You can also use the CKBuilder Online service to download a truly customized version of CKEditor.

How Do | Find Code Examples Showing CKEditor Customization?

Each CKEditor installation package available on the official download site contains a samples/ folder.

Once you download CKEditor, open the samples/index.html file in your browser to see a list of samples
presenting a broad range of usage scenarios and customization options for CKEditor. Each sample contains a
short description along with a code snippet as well as one or more CKEditor instances to play with.

If you are interested in learning how to create your own code to embed, configure, and customize CKEditor, have a
look at the source code of the sample pages.

The figure below presents one of the CKEditor samples, Massive inline editing (inlineall _.html), opened in a
browser.

http://docs.ckeditor.com/?print=/guide/dev_howtos_basic_configuration-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_basic_configuration-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_basic_configuration-section-3
http://docs.ckeditor.com/?print=/guide/dev_howtos_basic_configuration-section-4
http://docs.ckeditor.com/?print=/api/CKEDITOR.config
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-removePlugins
http://ckeditor.com/builder

!
;-f | 7] Massive inline editing — x\

'*l e | Il localhost/cksource/ckeditor-dev/samples/inlineall.hbtmil

CKEditor Samples » Massive inline editing

This sample page demonstrates the inline ediling fealure - GKEditor instances will be crealed aulomatically from page elemenis with contentEditabl

true:

WINR|xLREGEB Ak Elerendo me @

ciki| B I U § % o | Hlliz 35| #|9 B|= = sﬁmﬁ - = I-_||E o M|
i-smes - || Normai + || Font || size = ii- 0- E| |?

Lorem ipsum dolor sit amet enim. Ef

c K E D I I o R Suspendisse a pellentesque dui, nor

G o E s I N L I N E' malesuada elit lectus felis, malesuad
-

Curabitur et ligula. Ut molestie a, ult

Lorem ipsum dolor sit amet dolor MESHEERER SLTRIDO0 MO F o sl b0
duis blandit vestibulum faucibus a, L IR R e LR L LRI
tDFtDF. facilisis. Mulla imperdiet sit amet mi

dapibus, mauris nec malesuada fame

Fusce vitae porttitor Integer condimentum sit amet o
WY CKEditc

javaseriptvoid(Create Div Co ntainer’}l‘“r' Duls blandit Aenean nenummy a, mattis varius, Cras

B B T oo o o B o e

s CKEditor 4 Documentation

‘ Licensing and Support

How Do | Get Support? OIS

)) . o 1. How Do | Get Support?
If you are having trouble installing, configuring, or 2. How Do | Support the Development of CKEditor?
integrating CKEditor to your application, there are 3. How Does CKEditor Premium Works?

a few solutions that you can try.

Documentation
First of all, CKEditor comes with really extensive documentation that you should read.

Community Forum

The CKEditor Community Forums the place where CKEditor developers and integrators can share their problems
and solutions. CKEditor has grown as an Open Source product, thanks to the amazing community of developers
and users. The community forum works in Open Source way, so you are encouraged to not only ask questions, but
also answer them and help fellow developers. It will be much appreciated!

Professional Support Channel

There are times and situations, however, when you are unable to get going by yourself. If this is a case, you will be
happy to know that CKEditor Premium includes professional assistance directly from CKEditor core developers.
The dedicated support channel is available for you and responses to your inquiries come in one business day, or
even in the same day.

How Do | Support the Development of CKEditor?

CKEditor is and has always been an Open Source product. We are proud to be a part of the Open Source
movement and are happy that we can offer the result of long hours of work and dedicated contribution completely
for free to everyone who wants to use the editor.

If you also want to support the development of CKEditor, it will be most welcome. Here are a couple of things that
you can do:

» Report bugs or feature requests and submit patches on our Development site.

» Help localize CKEditor into your native language and update existing localizations by joining us at the CKEditor
Ul Translation Center.

» Create CKEditor plugins with new functionality and publish them on the CKEditor Add-Ons Repository.
« Join the Community Forum and share your knowledge with your fellow CKEditor users and developers.

o Buy CKEditor Premium. This will not only let you support the development of new editor features, but it will
also give you access to a dedicated support channel where CKEditor developers are available to help you
solve any issues you might have.

Thank you for your support and for helping us make CKEditor better every day!

How Does CKEditor Premium Works?

For full details about it, visit the CKEditor Premium website.

http://docs.ckeditor.com/?print=/guide/dev_howtos_support-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_support-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_support-section-3
http://docs.ckeditor.com/?print=/guides
http://ckeditor.com/forums/
http://cksource.com/ckeditor
http://en.wikipedia.org/wiki/Open_source
http://docs.ckeditor.com/?print=/guide/dev_issues_readme
http://dev.ckeditor.com/
http://docs.cksource.com/CKEditor_3.x/Developers_Guide/Localization
https://www.transifex.net/projects/p/ckeditor/
https://www.transifex.net/projects/p/ckeditor/
http://ckeditor.com/addons/plugins
http://ckeditor.com/forums/
http://cksource.com/ckeditor
http://ckeditor.com/support
http://cksource.com/ckeditor

s CKEditor 4 Documentation

‘ Interface

Contents

How Do | Remove the Elements Path?

How Do | Change the Size of the Editor?

How Do | Change the Size of the Editor on the Fly?

How Do | Remove the Ability to Resize CKEditor?

How Do | Limit the Width and Height for CKEditor Resizing?

How Do | Limit the Directions for CKEditor Resizing to Horizontal or Vertical Only?

How Do | Add the Toolbar Collapse Button?

How Do | Add or Remove Toolbar Buttons?

How Do | Navigate CKEditor Using the Keyboard?

How Do | Configure CKEditor to Use the Arrow Keys to Navigate Between All Toolbar Buttons?

DEGRNWSONE

=

How Do | Remove the Elements Path?

The elements path displays information about the HTML elements of the document for the position of the cursor.

[source & O @ & [B @ (@ Qb3 ElEBE®eOlas
’B I U S x. x* T, ’gz S E Y BIEIE EEE T e o RN
Styles - || Format - || Font - | size -| A- B)-| 3% = 2
1. Firstitem

2. Second item
3. Lastitem

body ol li strong

If you want to get rid of it, use the CKEDITOR.config.removePlugins setting to remove the elementspath plugin.

config.removePlugins = “elementspath”;

How Do | Change the Size of the Editor?

To define the default size of the editor, use the width and height configuration settings.

Note that the width value can be given as a number representing the value in pixels or as a percent representing
the size relative to the parent element containing the editor.

config.width = 850;
config.width "75%" ;

The height value defines the height of CKEditor editing area and can be given in pixels or em. Percent values
are not supported.

http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-3
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-4
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-5
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-6
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-7
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-8
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-9
http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-10
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-removePlugins
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-width
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-height

config.height = 500;
config.height = "25em";
config.height = "300px~;

How Do | Change the Size of the Editor on the Fly?

Besides defining a default size of the editor window you can also change the size of a CKEditor instance on the fly.

To achieve this, use the resize function to define the dimensions of the editor interface, assigning the window a
width and height value in pixels or CSS-accepted units.

// Set editor width to 100% and height to 350px.
editor.resize("100%", °"350°);

While setting the height value, use the isContentHeight parameter to decide whether the value applies to the
whole editor interface or just the editing area.

// The height value now applies to the editing area.
editor.resize("100%", °350%, true);

How Do | Remove the Ability to Resize CKEditor?

The editor window can be resized by using the resizing grip located in the bottom right-hand corner of CKEditor
interface (for RTL languages — in the bottom left-hand corner).

lsowee B O [@ @ [B @ (@ Qty £ = @ [=@
B I US x, x| T ||z := (9 BEl2 == 00 = ~ G
Styles ~ | | Format ~ || Font - Size - || A- - 32 L 2

This is some sample text. You are using CKEditor.

body p

To prevent the editor from being resized you can use the removePlugins setting to remove the resize plugin.
config.removePlugins = “resize”;

You can also disable this feature by setting the resize_enabled parameter to false.

config.resize_enabled = false;

How Do | Limit the Width and Height for CKEditor Resizing?

http://docs.ckeditor.com/?print=/guide/dev_howtos_interface-section-2
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#method-resize
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-removePlugins
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-resize_enabled

CKEditor window can be resized if the resize plugin is enabled. You can however define the minimum and
maximum dimensions to prevent the editor window from becoming too small or too big to handle.

To define the minimum editor dimensions after resizing, specify the resize_minWidth and resize_minHeight values
in pixels.

config.resize_minWidth = 300;
config.resize_minHeight = 300;

To define the maximum editor dimensions after resizing, specify the resize_maxWidth and resize_maxHeight
values in pixels.

config.resize_maxWidth = 800;
config.resize_maxHeight = 600;

How Do | Limit the Directions for CKEditor Resizing to Horizontal or Vertical Only?

CKEditor window can be resized if the resize plugin is enabled. You can however define the resizing directions in
order to have more control over the resulting editor appearance.

By default CKEditor resizing is allowed in both directions — vertical and horizontal. This is achieved thanks to
setting the resize_dir configuration value to "both* (this is the default setting).

config.resize_dir = “both";
If you want to allow vertical resizing only, you need to set the resize_dir configuration value to "vertical ".
config.resize_dir = “vertical”;

If you set the resize_dir configuration value to *horizontal ", CKEditor window will only be resizable in horizontal
dimension.

config.resize _dir = “horizontal”;

How Do | Add the Toolbar Collapse Button?

CKEditor toolbar can be collapsed and restored by using the Collapse Toolbar button located in the bottom right-
hand corner of the toolbar (for RTL languages — in the bottom left-hand corner).

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-resize_minWidth
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-resize_minHeight
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-resize_maxWidth
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-resize_maxHeight
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-resize_dir

Bswee BD R @B XL RBEB « ~|QAk E e eDDs

I= = |42 s |99 ¥ lZ:‘

i" ET

|E I U S x, x° I§<| = = A 1T1||@'?5. |-||EO

| Font -

| Styles - | Size =~

| Format -

Little Red Riding Hood

"Little Red Riding Hood" is a famous fairy tale about a young girl'’s encounter with a wolf. The story has bes
history and subject to numerous modern adaptations and readings.

e TPV N TN N (NP (RRENU PR PR PR JUR) SSNPRRP [P S . U f NP, . P USRI SR TR T U5 RN SR TP A [P | P |

If you want to enable this feature, you need to set the toolbarCanCollapse parameter to true.

config.toolbarCanCollapse = true;

How Do | Add or Remove Toolbar Buttons?

CKEditor toolbar is an array of button elements that you can freely add or remove.

Bswee BDR@ R XD EBEGE « QM E EEeDl:
BIUSXx Lz -€»8[Ezsz=Nule-nmae
|St'_.rles - |F1:|rmat - |F1:|nt - | size - || A~ [§-| 22 DUH '7|

Check the Toolbar Customization section of this guide for more information on how to customize it.

How Do | Navigate CKEditor Using the Keyboard?

CKEditor Accessibility Guide contains lots of useful information on using the CKEditor interface with your keyboard
or with assistive devices such as screen readers.

Many functions in CKEditor have their equivalent keyboard shortcuts. This is one of the reasons why working with
the editor is simple and efficient.

The Keyboard Shortcuts article describes available keyboard shortcuts grouped by problem areas.

How Do | Configure CKEditor to Use the Arrow Keys to Navigate Between All
Toolbar Buttons?

In CKEditor 3.6 the concept of toolbar button groups was introduced to enable faster and more efficient
navigation using the keyboard or assistive devices. In all previous versions of the editor, the Tab and Shift+Tab
keys had the same effect as using the Right and Left Arrow keys and were used to cycle between consecutive
toolbar buttons.

Since CKEditor 3.6, Tab and Shift+Tab navigate between toolbar button groups, while the Arrow keys are used
to cycle between the buttons within a group.

In order to change the new default toolbar navigation mode and use the Arrow keys as an equivalent to Tab and
Shift+Tab, use the following toolbarGroupCycling configuration setting:

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-toolbarCanCollapse
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-toolbar
http://docs.cksource.com/CKEditor_3.x/Accessibility
http://docs.cksource.com/CKEditor_3.x/Users_Guide/Keyboard_Shortcuts
http://ckeditor.com/blog/CKEditor_3.6_released
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-toolbarGroupCycling

config.toolbarGroupCycling = false;

‘ Styles

Contents

1. How Do | Customize the Styles Drop-Down List?

2. How Do | Add Existing CSS Styles from an External File to Editor Output and the Styles Drop-
Down List?

3. How Do | Add Custom Styles Based on CSS Classes?

4. How Do I Use the Styles on Images, Tables or Other Elements?

How Do | Customize the Styles Drop-Down List?

You need to pass your own style definitions to the CKEDITOR.stylesSet.add function, giving them a unique name,
and then configure the editor to use them by setting the stylesSet value.

CKEDITOR.stylesSet._add("my_styles®, [
// Block-level styles.
{ name: "Blue Title", element: "h2", styles: { color: "Blue® } },
{ name: “Red Title", element: "h3", styles: { color: "Red" } },

// Inline styles.

{ name: °CSS Style®, element: "span®, attributes: { “"class": "my style® } },

{ name: “Marker: Yellow", element: "span®, styles: { "background-color":
"Yellow™ } }

D:

Depending on whether your definitions were placed inline or in an external file, you need to set the stylesSet
configuration setting accordingly.

// For inline style definition.
config.stylesSet = "my_styles”;

// For a definition in an external file.
config.stylesSet = "my_styles:http://www._.example.com/styles.js";

For more details on the definition format and best practices on how to customize the styles please refer to the
Styles article from the Developer's Guide.

Stylesheet Parser Plugin

Note that since CKEditor 3.6 you can also populate the Styles drop-down list with style definitions added in an
external CSS stylesheet file. Check the How Do | Add Existing CSS Styles from an External File to the Styles
Drop-Down List? article for more information about using the new (and optional) Stylesheet Parser plugin.

How Do | Add Existing CSS Styles from an External File to Editor Output and the
Styles Drop-Down List?

CKEditor 3.6 and later includes the Stylesheet Parser (stylesheetparser) plugin that can be used to point to
an external CSS stylesheet containing style definitions. It will help you use existing CSS styles and display them in
the Styles drop-down list without a need to define them specifically for CKEditor as described here.

http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-3
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-4
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-stylesSet
http://docs.ckeditor.com/?print=/guide/dev
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-1
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add
http://docs.ckeditor.com/?print=/api/CKEDITOR.stylesSet#method-add

For more information on using the plugin refer to the Stylesheet Parser Plugin section of the Developer's Guide and
check the "Stylesheet Parser plugin” (stylesheetparser.html) sample from the samples/ folder of your
CKEditor installation package.

How Do | Add Custom Styles Based on CSS Classes?

Add a style definition as described in the How do | customize the Styles drop-down list? article and pass the class
name in the “attributes parameter.

Note: do remember that since some old browsers recognize class as a resereved word in JavaScript, you need
to place it in quotes.

The following example adds a myClass class to an img element. The image element will now be styled as defined
in this CSS class.

{

name: "Custom Image-”,

element: "img-",

attributes: { “class": "myClass” }
}

For more details on the definition format and best practices on how to customize the styles please refer to the
Styles article from the Developer's Guide.

How Do | Use the Styles on Images, Tables or Other Elements?

If you added some custom style definitions for objects such as tables or images, you need to select these objects
first before you will be able to apply the style. Object styles are only shown in the Styles drop-down list and can be
applied after the element was selected in the editor.

http://docs.ckeditor.com/?print=/guide/dev_styles-section-4
http://docs.ckeditor.com/?print=/guide/dev
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-1
http://docs.ckeditor.com/?print=/guide/dev
http://docs.ckeditor.com/?print=/guide/dev_howtos_styles-section-1

s CKEditor 4 Documentation

‘ File Upload

How Do | Upload Files or Contents

Images USlng CKEditor? 1. How Do | Upload Files or Images Using CKEditor?
2. How Do | Paste a Local Image from my Clipboard to CKEditor?
By default CKEditor does not
include a file browser or uploader.
You can, however, create a custom file browser or use an existing one, like CKFinder.

How Do | Paste a Local Image from my Clipboard to CKEditor?

It is not possible to paste a local file (like an image) directly to a website located on the server. This issue has
nothing to do with CKEditor, but is related to the security model of the Internet browsers.

If you want to add images to your document, you need to upload them to a server first. You can either upload them
to a server manually and then insert them using the Insert Image feature, giving the URL of the image, or integrate
CKEditor with a file browser and uploader like CKFinder and use it to upload the image from your local computer to
the server inside the CKEditor interface.

http://docs.ckeditor.com/?print=/guide/dev_howtos_file_upload-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_file_upload-section-2
http://ckfinder.com/
http://ckeditor.com/addon/image
http://ckfinder.com/

s CKEditor 4 Documentation

‘ Output

How Do | Output HTML Contents

Ins_tead of XHTML Code 1. How Do | Output HTML Instead of XHTML Code Using CKEditor?
Using CKEditor? 2. How Do | Output BBCode Instead of HTML Code Using CKEditor?

If you want CKEditor to output
valid HTML4 code instead of XHTML, you should configure the behavior of the dataProcessor.

For some tips on how to achieve this, check the Output Formatting section of Developer's Guide as well as the
Output HTML (plugins/htmlwriter/samples/outputhtml _html) and Output XHTML
(samples/xhtmlstyle_html) samples that can be found in CKEditor installation package.

If, for example, you want CKEditor to output the self-closing tags in the HTML4 way, creating
 elements
instead of
, configure the selfClosingEnd setting in the following way.

CKEDITOR.on("instanceReady®, function(ev) {
ev.editor.dataProcessor .writer._selfClosingEnd = ">";

P

How Do | Output BBCode Instead of HTML Code Using CKEditor?

You should try the BBCode plugin.

http://docs.ckeditor.com/?print=/guide/dev_howtos_output-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_output-section-2
http://docs.ckeditor.com/?print=/api/CKEDITOR.dataProcessor
http://docs.ckeditor.com/?print=/guide/dev_output_formatting
http://docs.ckeditor.com/?print=/guide/dev
http://ckeditor.com/addon/bbcode

s CKEditor 4 Documentation

‘ Pasting

How Do | Preserve Font Styles and Backgrounds When Pasting from Word?

The Paste from Word feature lets you copy the contents of Microsoft Word or Excel documents and paste them
into the editor, preserving the structure and styles that were present in the original text.

Note, however, that by default some font styles are not preserved to avoid conflicting with the styles of the
document created in CKEditor. If however, you want to use Word font styles, including font size, font family, and
font foreground/background color, set the pasteFromWordRemoveFontStyles configuration value to false.

config.pasteFromWordRemoveFontStyles = false;

http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-pasteFromWordRemoveFontStyles

s CKEditor 4 Documentation

‘ Spellchecker and Spell Check As You Type (SCAYT)

How Do | Set Contents

SCAYT to 1. How Do | Set SCAYT to Turn On Automatically?
Turn On 2. How Do | Disable SCAYT in CKEditor?
3. How Do | Change the Default Language for Spell Check As You Type (SCAYT)?

Automatically?

If you want to turn on the Spell Check As You Type (SCAYT) feature in CKEditor by default, set the
scayt_autoStartup configuration setting to true.

config.scayt _autoStartup = true;

How Do | Disable SCAYT in CKEditor?

If you want to completely disable the Spell Check As You Type (SCAYT) feature in CKEditor, remove the scayt
plugin using the removePlugins configuration setting.

config.removePlugins = “scayt”;

If you want to leave SCAYT available, but prevent the feature from being turned on automatically on loading the
editor, set the scayt_autoStartup configuration setting to false. This is the default value for CKEditor
configuration.

config.scayt_autoStartup = false;

How Do | Change the Default Language for Spell Check As You Type (SCAYT)?

By default SCAYT treats the text written in the editor as American English (en_US). If you want to change the
default SCAYT language, set the scayt _slLang configuration value to one of the 16 possible language codes that
are currently accepted.

// Sets SCAYT to French.
config.scayt _slLang = “fr_FR";

These are the language codes of languages currently supported by SCAYT: en_US, en_GB, pt BR, da DK,
nl_NL, en CA, fi_FI, fr_FR, fr_CA, de DE, el GR, 1t _IT, nb NO, pt PT, es_ES, and
sv_SE. If you enter a language code that is not supported, SCAYT will fall back to default American English.

http://docs.ckeditor.com/?print=/guide/dev_howtos_scayt-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_scayt-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_scayt-section-3
http://docs.ckeditor.com/?print=/guide/user_spell_checking
http://docs.ckeditor.com/?print=/guide/user_spell_checking
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-removePlugins
http://docs.ckeditor.com/?print=/guide/user_spell_checking-section-1
http://docs.ckeditor.com/?print=/api/CKEDITOR.config#cfg-scayt_sLang

s CKEditor 4 Documentation

‘ Dialog Windows

How Do | Change ~ Contents
the Contents of a
CKEditor Dialog
Window?

How Do | Change the Contents of a CKEditor Dialog Window?

How Do | Set a Default Value for a CKEditor Dialog Window Field?
How Do | Set a Specific Dialog Window Tab to Open by Default?
How Do | Learn the Names of CKEditor Dialog Window Fields?

How Do | Remove the Ability to Resize All CKEditor Dialog Windows?

CKEditor allows you to - ' N k) /
How Do | Remove the Ability to Resize Specific CKEditor Dialog Windows?

customize dialog
windows without
changing the original
editor code. For an example on how to add or remove dialog window tabs and fields refer to the Using the
JavaScript API to customize dialog windows sample and its source code from your CKEditor installation.

o0 @ ¢S @ [V =

How Do | Set a Default Value for a CKEditor Dialog Window Field?

In order to assign a default value to a dialog window field, use the 'default’ parameter in the dialog window Ul
element definition.

elements: [

{
type: "“text",
id: "myCustomField”,
label : "My Custom Field”,
"default®: "Default Custom Field Value!~
3,
{
type: “checkbox”®,
id: "myCheckbox",
label - "This checkbox is selected by default”,
"default”: true
s

The code above creates the following Ul elements in a sample dialog window tab.
My Dialog Window &

My Custom Field
Default Custom Field Value! |

This checkbox is selected by default

A

http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-2
http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-3
http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-4
http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-5
http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-6
http://nightly.ckeditor.com/latest/ckeditor/samples/plugins/dialog/dialog.html
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/dialog/samples/dialog.html

You can also customize existing dialog windows and give them default values. The following code sets the default
URL field value for the Link dialog window.

CKEDITOR.on(“dialogDefinition®, function(ev) {
// Take the dialog name and its definition from the event data.
var dialogName = ev.data.name;
var dialogDefinition = ev.data.definition;

// Check if the definition is from the dialog window you are interested in
(the "Link™ dialog window).
if (dialogName == “link®) {
// Get a reference to the "Link Info" tab.
var infoTab = dialogDefinition.getContents("info");

// Set the default value for the URL field.
var urlField = infoTab.get(“url®);
urlField[“"default®™] = "www.example.com”;

}
D:

After this customization the Link dialog window will contain the www.example . com default value in the URL field.

Link @

LinkInfo Target Advanced

Link Type

|URL Ed

Protocol URL

hitp: []

A4

For more examples on setting a default field value refer to the Using the JavaScript API to customize dialog
windows sample and its source code from your CKEditor installation.

Note: Since in some old browsers default is a reserved word in JavaScript, remember to always put it in quotes
when used in your code ("default”).

How Do | Set a Specific Dialog Window Tab to Open by Default?

If you want to change your CKEditor configuration to show a different tab on opening a dialog window, you can
hook into the onShow event of the dialog window.

Firstly, you will need to know the names of the dialog window and the tab that you want to set as default, so use
the Developer Tools plugin to get these.

Once you have the names you can add the following code into the page that contains your CKEditor instance. The

http://nightly.ckeditor.com/latest/ckeditor/samples/plugins/dialog/dialog.html
https://github.com/ckeditor/ckeditor-dev/blob/master/plugins/dialog/samples/dialog.html
http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition#property-onShow
http://docs.ckeditor.com/?print=/guide/dev_howtos_dialog_windows-section-4

example below sets the Image Properties dialog window to open the Advanced tab by default.

CKEDITOR.on("dialogDefinition®, function(ev) {
// Take the dialog window name and its definition from the event data.

var dialogName = ev.data.name;
var dialogDefinition = ev.data.definition;

it (dialogName == “image®) {
dialogDefinition.onShow = function() {
// This code will open the Advanced tab.
this.selectPage("advanced®);
};
}
s

If, for example, you want to open the Upload tab first to make it more convenient for your users to use the (existing
and previously integrated) file uploader, change the code in the following way:

// This code will open the Upload tab.
this.selectPage(“Upload®);

How Do | Learn the Names of CKEditor Dialog Window Fields?

If you want to customize a dialog window, the easiest and most convenient way is to enable the Developer Tools
plugin that displays the name and IDs of all dialog window elements when you hover them with your mouse.

The following figure shows the tooltip that describes the URL field of the Link dialog window that is displayed after
the Developer Tools plugin was enabled.

Link []

LinkInfo Target Advanced

Link Type

|URL E2

Protocol URL

ittt [

Element Information

Dialog window name : link
Tab name ; info

Element ID : url

Element type : text

A

How Do | Remove the Ability to Resize All CKEditor Dialog Windows?

Dialog windows of CKEditor can be resized by using the resizing grip located in the bottom right-hand corner of a
dialog window (for RTL languages — in the bottom left-hand corner).

http://docs.ckeditor.com/?print=/guide/user_interace_dialog_windows
http://ckeditor.com/addon/devtools

Link &

Link Info Target Upload Advanced

Id Language Direction Access Key

| | [notset- [=] | |
Mame Language Code Tab Index

| | | | | |
Advisary Title Advisory Content Type

| | | |
Stylesheet Classes Linked Resource Charset

| | | |
Style

| |
o
. 7

You can disable the resizing feature completely by setting the resizable parameter to
CKEDITOR.DIALOG_RESIZE_NONE.

CKEDITOR.on("dialogDefinition®, function(ev) {
ev.data.definition.resizable = CKEDITOR.DIALOG_RESIZE NONE;

D:

Use the CKEDITOR.DIALOG_RESIZE_WIDTH and CKEDITOR.DIALOG_RESIZE_HEIGHT values to enable
resizing of a dialog window in one dimension only.

How Do | Remove the Ability to Resize Specific CKEditor Dialog Windows?

If you want to leave the resizing feature for some of the dialog windows and turn it off for others, you may define
the value of the resizable parameter for each dialog window separately, like in the example below.

CKEDITOR.on(“dialogDefinition®, function(ev) {
if (ev.data.name == "link")
ev.data.definition._resizable = CKEDITOR.DIALOG_RESIZE_NONE;
else if (ev.data.name == "image”)
ev.data.definition.resizable = CKEDITOR.DIALOG RESIZE HEIGHT;

D:

Use the CKEDITOR.DIALOG_RESIZE_WIDTH and CKEDITOR.DIALOG_RESIZE HEIGHT values to enable
resizing of a dialog window in one dimension only.

http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition#property-resizable
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_WIDTH
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_HEIGHT
http://docs.ckeditor.com/?print=/api/CKEDITOR.dialog.definition#property-resizable
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_WIDTH
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_HEIGHT
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_NONE
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_HEIGHT
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_HEIGHT
http://docs.ckeditor.com/?print=/api/CKEDITOR#property-DIALOG_RESIZE_HEIGHT

s CKEditor 4 Documentation

‘ Miscellaneous

How Do | Read or Write ~ Contents

the antents of 1. How Do | Read or Write the Contents of CKEditor from JavaScript?
CKEdItO_r from 2. How Do | Compress CKEditor Source Code After Customization?
JavaScript?

If you want to read CKEditor contents, use the getData method.
If you want to write some content into CKEditor, use the setData method.

An example of how to use these functions can be found in the Basic usage of the API sample
(samples/api .html) located in the samples/ directory of CKEditor installation package.

How Do | Compress CKEditor Source Code After Customization?

Check the Build from Source Code page.

http://docs.ckeditor.com/?print=/guide/dev_howtos_miscellaneous-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_miscellaneous-section-2
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#method-getData
http://docs.ckeditor.com/?print=/api/CKEDITOR.editor#method-setData

s CKEditor 4 Documentation

‘ Bugs and New Features

How Do | Report CKEditor Bugs? (Gl
_ _ _ _ _ 1. How Do | Report CKEditor Bugs?
The Reporting _Issues session of this guide brings all 2. How Do | Request New CKEditor Features?
the necessary information on how to properly report
issues.

How Do | Request New CKEditor Features?

If you feel there is an interesting feature missing in CKEditor, go to the development site: http://dev.ckeditor.com/
and file a ticket.

Please make sure you read the Bug Reporting Instructions and Ticket Specs articles beforehand in order to make it
easier for the developers to examine the issue. It is also recommended to start from a search at the community
forum to see whether the proposed functionality has not been implemented yet and offered as a plugin or code
sample. You can also start a discussion to see whether the proposed feature could gain some interest from other
community members.

When submitting a new ticket, feel free to attach your code suggestions or patches that can serve as a prototype
for the requested feature.

http://docs.ckeditor.com/?print=/guide/dev_howtos_bugs_and_features-section-1
http://docs.ckeditor.com/?print=/guide/dev_howtos_bugs_and_features-section-2
http://docs.ckeditor.com/?print=/guide/dev_issues_readme
http://dev.ckeditor.com/
http://dev.ckeditor.com/wiki/Bugs
http://dev.ckeditor.com/wiki/TicketSpecs
http://cksource.com/forums/
http://cksource.com/forums/

	Guides - CKEditor 4 Documentation
	CKEditor 4 Developer's Guide
	Installation
	Integration
	Loading CKEditor
	Framed Editing
	Inline Editing

	Configuration
	Setting Configurations
	Toolbar
	Styles
	Advanced Content Filter
	Introduction
	Allowed Content Rules

	Output Formatting
	Spell Checker
	File Browser and Upload
	Introduction
	File Browser API
	Custom Dialog Usage

	Customization
	Plugins
	Skins

	Source Code
	Getting the Source
	Building

	HOWTOS
	Basic Configuration and Customization
	Support
	Interface
	Styles
	File Upload
	Output
	Pasting
	Spellchecker and Spell Check As You Type (SCAYT)
	Dialog Windows
	Miscellaneous
	Bugs and New Features

